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INTRODUCTION

Let 4 be a set of 2n points in general position in the Euclidean plane R? and
suppose n of the points are colored red and the remaining n are colored blue. A
celebrated Putnam problem (see [6]) asserts that there are n pairwise disjoint
straight line segments matching the red points to the blue points. To show this,
consider the set of all n! possible matchings and choose one, M, that minimizes the
sum of lengths I(M) of its line segments. It is easy to show that these line segments
cannot intersect. Indeed, if the two segments v,, b, and v,, b, intersect, where v,, v,
are two red points and b,, b, are two blue points, the matching M’ obtained from M
by replacing v,b, and v, b, by v,b, and v, b, satisfies {M’) < (M), contradicting the
choice of M. Our first result in this paper is a generalization of this result to higher
dimensions.

THeoreM 1: Let 4 be a set of d - n points in general position in R% and let
A=A, U A, U -+ U A, be a partition of 4 into d pairwise disjoint sets, each con-
sisting of n points. Then there are n pairwise disjoint (d — 1)-dimensional simplices,
each containing precisely one vertex from each 4;,1 <i < d.

We prove this theorem in the next section. The proof is short but uses a non-
elementary tool: the well-known Borsuk-Ulam theorem.

Combining Theorem 1 with an old result of Erdos from extremal graph theory
we obtain a corollary dealing with geometric hypergraphs. A geometric d-hypergraph
is a pair G = (V, E), where V is a set of points called vertices, in general position in
RY, and E is a set of (closed) (d — 1)-dimensional simplices called edges, whose ver-
tices are points of V. If d = 2, G is called a geometric graph. It is well known (see [3],
[5]) that every geometric graph with »n vertices and n + 1 edges contains two dis-
joint edges, two nonintersecting edges, and this result is the best possible. The
number of edges that guarantees | pairwise disjoint edges is not known for | > 2,
although Perles [7] determined the exact number for the case that the set of vertices
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V is the set of vertices of a convex polygon. The situation seems much more difficult
for geometric d-hypergraphs, when d > 2. Even the number of edges that guarantees
two disjoint simplices is not known in this case. Clearly this number is greater than

-1
(Z 1) (simply take all edges containing a given point) and is at most (:) In the

final section we prove the following theorem, that implies that for every fixed 4,
| = 2, every geometric d-hypergraph on n vertices that contains no I pairwise nonin-
tersecting edges has o(n?) edges.

THEOREM 2: Every geometric d-hypergraph with n vertices and at least n®~*/*™"

edges contains ! pairwise nonintersecting edges.
It is worth noting that the following, much stronger conjecture seems plausible.

ConJECTURE 1: For every I, d > 2 there exists a constant ¢ = ¢(l, d) such that
every geometric d-hypergraph with n vertices and at least ¢ - n~! edges contains /
pairwise nonintersecting edges.

We do not know how to prove this conjecture, even ford = 2,1 = 3.

PROOF OF THEOREM 1

We need the following lemma, sometimes called the “Ham-Sandwich theorem,”
which is a well-known consequence of the Borsuk-Ulam theorem (see [1], [2]).

Lemma 1: Let ug, g5, ..., 4, be d continuous probability measures in R%. Then
there exists a hyperplane H in R? that bisects each of the d measures, that is,
u{H*) = p{H X=3%) for all 1 <i <d, where H* and H~ denote, respectively, the
open positive side and the open negative side of H.

Theorem 1 will be derived from the following lemma.

LeEMMA 2: Let A, A, A,, ..., A, be as in Theorem 1. Then there exists a hyper-
plane H in R? such that

|H* n A;| = [n/2] and |H™ n A;| =[n/2] foralll <i<d (1)
(Notice that if n is odd (1) implies that H contains precisely one point from each A4,.)

Proof: Replace each point p € A by a ball of radius ¢ centered in p, where ¢ is
small enough to guarantee that no hyperplane intersects more than d balls. Associ-
ate each ball with a uniformly distributed measure of 1/n. For 1 <i<d and a
(lebesgue)-measurable subset T of RY, define u(T) as the total measure of balls cen-
tered at point of A; captured by T. Clearly u,, u,, ..., u; are a continuous probabil-
ity measure. By Lemma 1 there exists a hyperplane H in R such that u(H*) =
u{H )=4%for all 1 <i<d. If nis odd, this implies that H intersects at least one
ball centered at a point of 4;. However, H cannot intersect more than d balls alto-
gether, and thus it intersects precisly one ball centered at a point of A;, and it must
bisect these d balls. Hence, for odd n, H satisfies (1). If n is even, H intersects at most
d balls, and by slightly rotating H we can divide the centers of these balls between
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H* and H~ as we wish, without changing the position of each other point of A with
respect to H. One can easily check that this guarantees the existence of an H
satisfying (1). g

We can now prove Theorem 1 by induction on n. For n = 1 the result is trivial.
Assuming the result for all ', n’ < n, let A, Ay, A,, ..., A; be as in Theorem 1 and
let H be a hyperplane, guaranteed by Lemma 2, satisfying (1). Put B,=H* n 4,
and C;=H n A;for 1<i<d, B=B,u---uBjand C=C, u---u ;. By
applying the induction hypothesis to B, B, ..., B, and C, C,, ..., C,, we obtain two
sets S, and S, of [1#/2] pairwise disjoint simplices each, where each simplex of §,
contains precisly one vertex from each B; and each simplex of S, contains precisely
one vertex from each C;. Clearly, all the simplices in §, lie in H* and all those in S,
liein H™.

We thus obtained 2 - [#/2] pairwise nonintersecting simplices. These, together
with the simplex spanned by A; n H if n is odd, complete the induction and the
proof of Theorem 1. O

PROOF OF THEOREM 2

We need the following result of Erdés.

LemMA 3 [4]: Every d-uniform hypergraph with n vertices and at least n?~ /479
edges contains a complete d-partite subhypergraph on d classes of ! vertices each.

Now suppose that G is a geometric d-hypergraph with n vertices and at
least n?~®/“"Y edges. By Lemma 3 there is a set A of [ - d vertices of G, A= A, U

- w Ay, where | A;} = I for each i, and all the I (d — 1)-simplices consisting of one
vertex from each A, are edges of G. The assertion of Theorem 2 now follows from
Theorem1. O
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